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Featured Application: Use of fiber optics to monitor a target on a medical cyclotron. 

Abstract: Many medical isotopes can be produced on a small cyclotron. The alignment and profiles 
of low-energy proton beams from cyclotrons used for medical radioisotope production, such as the 
TR13 cyclotron at TRIUMF, Canada, cannot be directly quantified during dose delivery with 
simultaneous constant feedback and sharp spatial resolutions. Doped silica fibers are a potential 
solution that has been tested at TRIUMF. To measure the effects of irradiation inside an isotope 
production target, we attached fibers to the outside of an 18O gas target and measured the light 
output during irradiation. Different dopants, fiber diameters, and target materials were 
investigated. It was found that 200 µm diameter Ce- and B-doped fibers produce signals linearly 
proportional to the beam current. This only deviated when the target was moved such that the beam 
was steered into the target wall, increasing the production of prompt radiation and causing the 
beam current to decrease but the fiber signal to increase. With the technique described here, the 
beam can be monitored on the target, including its steering and its overall alignment with the target. 
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1. Introduction 

Many isotopes for diagnostic and therapeutic applications can be produced on a medical 
cyclotron. To maximize the production of medical radioisotopes, the system’s parameters must be 
understood. Therefore, the shape, trajectory, and the location of the proton beam relative to the 
production target must be quantified to optimize production yields. Currently, for low energy 
cyclotrons, no techniques are available that allow for real-time monitoring of proton beams that also 
enable operators to evaluate the beam position and angle relative to the target being irradiated, or 
the beam shape in real time and in situ. High energy particle beams can be profiled in real time by 
intercepting the beam with sensors. Unfortunately, low energy cyclotrons cannot easily be profiled 
in this manner as these materials would absorb a large fraction of the beam’s energy; thus, reducing 
the cyclotron’s production efficiency [1]. Concomitantly, these devices are at risk of thermal failure 
due to their propensity to accumulate excess power at production currents. Alternative methods of 
beam profiling include periodically traversing the beam with a wire [2], radiographically analyzing 
irradiated foils using radiosensitive films [1,3], optimizing the beam while irradiating a scintillating 
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material and quantifying the results [4], using electrically isolated materials at the front of the target 
such as collimators [5], or tuning the beam at the beginning of a production run using a beam profile 
monitor [1]. Nonetheless, none of these methods provide an online, rapid feedback with sharp spatial 
resolution for measuring the beam profile and trajectory simultaneously onto a target. Overall 
prompt radiation has also been measured to monitor target conditions [5]. 

One possible solution that has shown promise for profiling proton, photon, and electron beams 
are Ce-doped silica-fiber optics [6–9]. In fact, these fibers have previously been tested at TRIUMF to 
measure dose response and steering of proton beams for proton therapy [6,10], and at Bern University 
Hospital to characterize an 18 MeV proton beam used for medical isotope production [11] where it 
was used as a beam profile monitor incorporated into a beam line.  

When placed near a proton beam, ionizing radiation such as gamma rays or neutrons deposit 
energy in doped optical fibers and excite or ionize electrons, and consequently leave the atoms of the 
dopant in an excited state. These excited states are short-lived, and thus the atoms decay fluorescently 
to return to their ground state. The fluorescence can be transmitted via an optical transport fiber and 
detected by a photodetector, converting the radiance reading into a current related to the energy 
imparted on the fiber. The combination of fast fluorescence with small fiber optics allows for near 
real-time data acquisition and high spatial resolution [9]. 

Overall, being extremely thin and potentially radiation resistant in comparison to organic fibers, 
inorganic fiber optics offer an elegant solution to profile low energy cyclotron proton beams 
[10,12,13]. However, as the proton beam profile is only measured in the plane in which the fiber(s) 
probe the beam, the direction and divergence of the beam is only accessible if it is measured in several 
locations along the beam axis. Many isotope production cyclotrons are very compact and do not have 
room for one or several profile monitors in front of the production target. To still give information 
about the beam current, beam direction and beam divergence, we explored the possibility of 
attaching the fibers onto the outside walls of targets to provide information about the beam 
movement and its position by comparing the differing fluorescence intensities of the fiber array. The 
objective of this research was to evaluate the potential of fiber optics to give information about the 
current, contour, and trajectory of low energy proton beams. 

2. Materials and Methods  

2.1. Fiber Optic Setup 

The doped silica fibers provided by D-Pace were fabricated by the University of Milano-
Bicocca’s Department of Material Science (UMB-DMS) using the sol–gel process [6,14]. The fibers 
were SiO2 doped with Ce3+ ions and were drawn to a diameter of 200 µm or 600 µm. The fiber 
produces radio-luminescence (RL) emitted by the Ce3+ dopant ions due to excitation by ionizing 
radiation, with an emission band centered at 450 nm. The SiO2 fiber also produces luminescence due 
to Cherenkov radiation, which is characterized by a broad spectral emission in the blue-UV 
wavelength region [7]. The boron-doped fibers are manufactured from commercial grade borosilicate 
glass (model 0500, Hilgenberg, Germany). None of these fibers had a cladding or protective layer. 
Each fiber was terminated with an SMA 905 connector. The fibers used are summarized in Table 1. 

Table 1. Fiber samples. 

Fiber Dopant Length Diameter 
Ce-600 Ce3+ 8.0 cm 600 µm 
Ce-200 Ce3+ 3.0 cm 200 µm 
B-200 B3+ 7.5 cm 200 µm 

As the fibers are delicate, the unit was then slid into a custom plastic housing, as shown in Figure 
1b. To reduce the noise due to background light, the detector assembly was subsequently wrapped 
in black electrical tape. The fibers were attached to the outside of the 18O(p,n)18F gas target in position 
D with an inner length of 12 cm, routinely in use at our facility, see Figures 1a and 2. To transport the 
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light output to the photodetector, 13.5 m long plastic fibers of 1 mm in diameter were then attached 
to the SMA connector, and on the other end to a Multi-Pixel Photon Counter (MPPC, Hamamatsu 
model C11208-01(X); 100 ms gate time and 0.5 photon equivalent threshold selected for all 
experiments). To further reduce the noise from ambient light, the SMA connectors were also covered 
in black electrical tape as shown in Figure 1a. The MPPC was connected to a PC via a USB cable and 
the data from the MPPC was displayed and recorded via the provided software. The entire 
configuration is summarized in Figure 1c. 

 
Figure 1. (a) 200 µm Ce-doped fiber and 200µm B-doped fiber mounted to the 18F gas target. (b) 200 
µm borosilicate fiber in plastic housing without the black tape wrapping to prevent background from 
ambient light. (c) Schematic of the setup. 

2.2. TR13 Cyclotron 

The TR13 at TRIUMF is a 13 MeV negative hydrogen-ion cyclotron used for producing medical 
isotopes [15]. This machine has a design energy output of 13–19 MeV. Due to its location at TRIUMF 
and shielding restriction, the extracted beam energy is restricted to 13 MeV by a permanent beam 
blocker installed in the acceleration plane. The H− ions are transported through a short beam line 
from an external ion source. After they are accelerated to 13 MeV in the cyclotron, the ion flow is 
intercepted by a thin carbon foil, stripping the electrons from the H− ions, reversing the charge, and 
thus yielding protons with a curvature opposite to the original trajectory. This allows for the 
extraction of the proton beam. The TR13 cyclotron has two beam exits on opposite sides, each with a 
target selector equipped with four target ports, mounted on moveable bellows. Every target position 
has four electrically isolated collimators tracing the beam’s position in relation to the target. A 
depiction of the target selector and a single target port is presented in Figure 2. The targets can be 
positioned into the axis of the beam using steering motors. The beam is centered by moving the target 
while monitoring the beam spill onto the collimators. The data points that were collected from the 
cyclotron during this analysis include the beam current, the left, right, top, and bottom collimator 
currents, and the gas pressure inside the target. 

During the experiments, a solid target with a thallium disk was installed in target position A, a 
water target with de-ionized, natural water was installed in position B, a target plug was installed in 
position C, and the 18F gas target was installed in position D. The latter operates via a two-shot 
method, irradiating enriched 18O gas and subsequently irradiating an Ar/F2 mixture to recover the 
produced 18F from the target body wall. The maximum currents on each target were 10 µA for the 
water target, 15 µA for the thallium target, 20 µA for the Ar/F2 gas mixture, and 25 µA for the enriched 
18O gas target.  
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Figure 2. (a) Layout of the targets (blue) and fiber (yellow) in the inner position on the target selector 
(grey) looking upstream. Position A is housing a natural water target for the 16O(p,a)13N production, 
position B is a natural thallium target for the 203Tl(p,n)203Pb production, position C holds a target plug, 
and position D is an 18O(p,n)18F gas target. (b) Quadrant collimators in front of target port D looking 
upstream. Each target position has its own quadrant collimator. 

The different irradiation conditions are summarized in Table 2. In general, the beam current was 
increased and decreased in 5 µA increments. As the MPPC only has one channel, the fiber was 
switched at the MPPC connector at the end of each current step so that the signal from both fibers 
could be measured during the same irradiation subsequently. In experiments 1A to C, no excessive 
beam steering by moving the target, other than to center the beam, was performed. For runs 2A and 
B, “regular” steering refers to instances where the current on each collimator was typically only 
increased to approximately 3 µA to stay under the trip level of the collimator. For experiment 3, 
“intense” steering refers to instances of steering the beam such that the collimator currents reached 
nearly 5 µA. 

Table 2. List of Experiments. The fiber(s) were always installed on the gas target in position D, while 
not only target D but also A and B were irradiated. Only one fiber was read out at the time. 

Run Target 
Material 

Target 
Position 

Fiber 
Position on 

Target D 
Fiber(s) Used Conditions 

1A Solid Tl B Inner  Ce-600 Up to 10 µA, no beam steering 
1B Water A Inner  Ce-600 Up to 20 µA, no beam steering 
1C 18O gas D Inner  Ce-600 Up to 25 µA, no beam steering 
1D 18O gas D Inner  Ce-200 & B-200 Up to 25 µA, no beam steering 

2A 18O gas D 
All four 
target 

quadrants 
Ce-200 & B-200 Up to 25 µA, regular steering 

2B Ar/F2 D 
All four 
target 

quadrants 
Ce-200 & B-200 Up to 15 µAs, regular steering 

3 18O gas D Inner  Ce-200 & B-200 Up to 25 µAs, intense steering 
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2.3. Analysis 

To analyze each set of experiments, a Python 3.7.2 script was developed using JetBrains 
PyCharm Community Edition (2018.3.5 x64) equipped with the XlsxWriter (v1.1.5), numpy (v1.16.2), 
and pandas (v0.24.1) packages. Foremost, this code aligned the signals collected from the TR13 
cyclotron (current on target and collimators and target pressure) with the signal received from the 
MPPC module. This was achieved by detecting the first increase in current readings, and the time 
when a change in the fiber’s signal measured a count-per-second reading greater than the average of 
the first 10 data points plus 1000 counts to be above the standard deviation of the noise level of the 
background. Additionally, since the MPPC module’s sample rate is 10 Hz and the TR13’s sample rate 
is 1 Hz, only one in every 10 fiber signals was used. If two fibers were being alternated during an 
experiment, the signals were separated by finding the point at which the fiber signal was reported as 
zero, signifying when a fiber was disengaged.  

When investigating the effect of beam current on the fiber signal, a linear relationship is 
expected. Using the data acquired from the TR13 and the fiber, the Pearson correlation coefficients 
are then calculated in the code between the fiber signal and the collimator and beam currents. This 
coefficient is a statistical measure that evaluates the strength of a linear relationship where coefficients 
of ±1 signal a perfect positive or negative linear relationship, and of 0 corresponds to no linear 
relationship. This statistic was selected as our initial analyses revealed a linear relationship between 
the beam current and target pressure with the fiber signal, see Figure 3. The algorithm also returns 
the ranges of each beam current in steps of 5 µA. A signal processing method further detects the 
regions at which the target selector was moved, classified by points at which a collimator’s current is 
altered beyond a threshold of 0.045 µA. The correlations between the fiber signal and the beam 
current, and the correlations between the fiber signal and the affected collimators were calculated for 
each time period that the target selector was manipulated. The code also calculates the average signal 
of the beam and collimator currents, the pressure, and the fiber signal at each 5 µA step, and the 
corresponding standard deviations. This data is presented numerically and graphically in an Excel 
file using the XlsxWriter package. After all the experiments of a given configuration were analyzed, 
the correlation coefficients of each collimator and the incident beam current between the fiber signal 
were entered into an Excel file, along with the duration that the selector was moved for, and the beam 
current at which this occurred. With this information stored in a precise format, the code calculated 
the total average of the coefficients and the average at each current, along with the corresponding 
standard deviations. 

3. Results and Discussions 

3.1. Beam-Current Effect 

Figure 3 shows the results from run 1A through D with the Ce-600 fiber, mounted on the Tl 
target (round/red points), the water target (square/black points) and the gas target (triangle/green 
points). The signal height tracks with the distance to the irradiated target and the target length and 
could be due to a geometric effect. It should also be noted that the prompt radiation from the different 
target materials is not the same due to the different nuclear reactions taking place.  

Figure 3 shows the results from the Ce-200 fiber (inverted triangle/blue points). While the signal 
is lower than in the larger Ce-doped fiber when the 18O gas target is irradiated (triangle/green points), 
it does not scale with the cross-sectional area of the fiber by a factor of nine but only drops by a factor 
of four. It should be noted that the two Ce-doped fibers were of different lengths, with the larger fiber 
being 2.6 times longer, which may account for the difference in signal response.  

The diamond/cyan points in Figure 3 show the result from the B-200 fiber with a signal height 
about 20% lower than with the Ce-200 fiber of the same diameter (inverted triangle/blue points). This 
could be due to a different light-output efficiency, especially as the B-doped fiber is 2.5 times longer 
than the Ce-doped fiber of the same diameter. 

For all irradiations a correlation between the beam current and the fiber signal is observed, 
independent of the fiber diameter and dopant. The only deviation from linearity was observed for 
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high currents in experiment 1C (triangle/green points), when the Ce-600 fiber was used at a current 
above 12 µA. Here, the correlation was anti-linear, decreasing with increasing beam current. This 
effect was reversible: Once the beam current was decreased, linearity was restored. One possible 
explanation could be the result of the high temperature due to the power deposition of the beam. In 
fact, previous research has indicated that excessive internal fiber temperatures lead to lower signal 
outputs [16]. Another hypothesis is that the MPPC at high light levels reacts with decreasing digital 
output. This is not observed with either 200 µm fiber, likely due to their reduced volume.  

Based on the results, both the B-200 and Ce-200 fibers are valid candidates for measuring 
changes in beam current. A sufficiently strong signal is induced with a linear relationship even at 
higher currents, in addition to offering better spatial resolution than with the Ce-600 fiber. 

 
Figure 3. Response of the different fibers to changing beam current for different experiments. The R2 
values of the linear fits are (1B) 0.9968, (1A) 0.9661, (1C ascending) 0.9397, (1C descending) 0.9905, (1D 
Ce-200) 0.9929, and (1D B-200) 0.9905, respectively. 

3.2. Beam-Alignment Effect 

Experiments 2A and 2B were conducted at a target current of 20 µA when the beam was aligned 
with the target. The target selector was moved to resemble regular steering at each of the 5 µA current 
intervals. The purpose was to assess if the movement and position of the beam relative to the target 
could be detected using fiber optics. Figure 4a,b show an example from the Ce-200 fiber. Figure 4c 
summarizes all experiments with the Ce-200 and B-200 fiber, respectively. The fibers were mounted 
next to the bottom collimator, as shown in Figure 2. 

Specifically, in Figure 4a the fiber signal increases when the beam is steered into the left 
collimator at time 5 s and decreases when it is steered into the right collimator at time 12 s. On the 
other hand, in Figure 4b, the fiber signal decreases when the beam is steered into the top collimator 
and decreases even more when it is steered into the bottom collimator. Additionally, the fiber signal 
peaks when the top collimator current is slightly greater than the bottom collimator current. Overall, 
there is not a clear correlation between the current on the top and bottom collimators with the fiber 
signal as expected if the fiber signal strength is a measure of the alignment with the target material. 
When the beam is misaligned with the target, more beam is measured on the respective collimator 
and does not reach the target material as much. On the other hand, Figure 4a shows a correlation for 
increasing beam current on the left collimator. 
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Figure 4. In (a) and (b), the collimator currents are compared with the Ce-200 fiber’s signal while at a 
beam current on the target of 20 µA. Both fibers are mounted at the side of the target closest to the 
bottom collimator. The bar graph in (c) expresses the correlations between the collimator currents and 
the fiber signal when the target selector was moved in the plane that the collimators were positioned 
in, and the beam current’s correlation during these periods. 

We suspect that this correlation with the left collimator current occurs due to the beam entering 
the target already at an angle since it is extracted at 13 MeV, the lower end of the TR13’s extraction 
energy range and the extreme position of the extraction foil. At the high energy the beam angel is 
directed into on direction, see Figure 5a, while at the lower extraction energy it is directed into the 
opposite direction, Therefore, when the beam is steered towards the left collimator by moving the 
target, the beam is actually steered into the wall of the target, thus increasing the prompt radiation. 
However, when the beam is moved in the opposite direction it cannot impinge as much on the 
opposite wall due to its angle and thereby stops in the collimator. This effect is not as strong in the 
top/bottom orientation as the beam does not have an extreme angle entering the target in this 
direction. An illustration of this hypothesis is shown in Figure 5.  

 
Figure 5. Illustrations comparing the 19 MeV (a) and 13 MeV (b) extractions and the resulting beam 
steering effects. The arrows indicate target movement in the left-right direction. 

The relationships between the steering and the fiber signal were further explored at different 
beam currents and steering levels as shown in Figure 6, with regular steering in (a) and (b) and 
intense steering in (c) and (d) (experiment 3). While regular steering has a correlation with the fiber 
signal, especially in the right and left collimators, intense steering appears to have no clear 
correlation. 
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Figure 6. (a) Correlation coefficients as a function of beam current on target for regular steering up to 
3 µA on the right and left collimator and (b) on the top and bottom collimator. (c) Correlation 
coefficients as a function of beam current on target for intense steering up to 5 µA on the right and 
left collimator and (d) on the top and bottom collimator. 

To further explore this effect, the left collimator current (displaying correlation with the fiber 
signal) and top collimator current (displaying no clear correlation with the fiber signal) were graphed 
against the fiber signal, the beam current, and the target’s pressure. The pressure p was normalized 
to match the range of the current data for comparison using the transformation formula 𝑝  =  𝐼௠௔௫  − 𝐼௠௜௡𝑝௠௔௫  − 𝑝௠௜௡  × ሺ𝑝 − 𝑝௠௔௫ሻ  + 𝐼௠௔௫ 

where Imax and Imin are the maximum and minimum currents for the given data set and pmax and pmin 
are the maximum and minimum pressures for the time period the data corresponds to. The data was 
collected during an irradiation with maximum beam steering, where the Ce-200 and B-200 fibers were 
attached to the bottom collimator’s side of the target, see Figure 2. The results comparing the left 
collimator’s current with the fiber signal are displayed in Figure 7a,b, while the top collimator’s 
current is compared in Figure 7c,d. Note that the negative collimator current outputs are believed to 
be the result of a minor calibration error in the TR13 current read-out module. 

In all four conditions, the target current, the target pressure and the fiber signal increase with 
increasing collimator current before decreasing again. This is indicative of the beam being slightly 
misaligned with the target center. For instance, a peak in the target pressure implies that the beam is 
irradiating the largest target-area cross section and depositing the most power. Since the pressure 
increases when the beam is steered slightly towards the left and top collimators, the beam must not 
have been optimally aligned despite balanced collimator currents. The only exception is when the 
beam is steered onto the left collimator at high currents, in which case the fiber signal continues to 
increase slightly after 1 µA. Again, this can be explained by the beam angle in relationship to the 
target axis as sketched in Figure 5. In addition, the maximum for the pressure and fiber signal for the 
left/right plane is at a left-collimator current of ~1.25 µA, while in the top/bottom plane, it is at top-
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collimator current of 0.75 µA. This can be explained by a larger beam size in the left–right direction 
than in the top–bottom direction, as confirmed by beam profile measurements [1]. 

 
Figure 7. Beam current on target, normalized target pressure and Ce-200 fiber signal as a function of 
the (a) left collimator current at low beam current, (b) left collimator at high beam current, (c) top 
collimator at low beam current, and (d) top collimator at high beam current. Summary of n = 6 
experiments using both the B-200 and Ce-200 fibers. 

The results in this section imply that our fiber-sensing technique holds information about the 
centering of the beam on the target material and the alignment with the target axis. In addition, it 
may be possible to extract information about the size of the beam as a larger beam results into 
potentially more beam deposition into the target wall, which in turn results in a higher fiber signal. 

3.3. Target-Material Effect 

The Ce-200 fiber signal output generated via the irradiation of 18O gas and the Ar/F2 gas mixture 
in the same target body is compared in Figure 8. The results reflect that the fiber signal generated 
during the 18O(p,n)18F irradiation is greater than the signal from the irradiation of Ar/F2. We suspect 
that this is the result of more neutrons being generated in the 18O(p,n)18F reaction. According to these 
results, the signal–current relationship for a given target material could be calibrated in advance. 
During routine operation this technique could then be employed to verify that the correct material 
has been loaded into the target. It may be also indicative of fill levels as the irradiation of for example 
an 18F production target with less target material would yield fewer neutrons. 
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Figure 8. Graph comparing the difference in Ce-200 fiber signal between the irradiation of 18O gas and 
Ar/F2 mixture. The adjusted R2 values are 0.9838 and 0.9945, respectively. 

4. Conclusions 

A technique for monitoring beam delivery on solid, liquid, and gas targets on a low-energy 
medical cyclotron has been demonstrated using doped silica fibers of different diameters (600 µm 
and 200 µm) and different dopants (cerium and boron). The fibers are easily attached to the outside 
of the target body and capture the prompt radiation during irradiation of the target. It has been 
demonstrated that the signal output of the fibers is a direct measure of the beam current on target for 
the smaller fibers, as the larger fiber seems to saturate in high radiation fields. The smaller diameter 
fibers are also ideal for future applications as more fibers can be mounted around the target body. 
The fiber signal also holds information about beam centering, beam steering and beam size. In 
addition, the fiber signal depends on the irradiated target material, potentially enabling a rapid test 
to confirm that the correct target material has been loaded into the target holder. As different beam 
energies and target systems will create different levels of prompt radiation, the sensitivity will need 
to be explored further. Overall, fibers offer an easy and cost-efficient monitoring solution for isotope 
production targets. 
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